黄页视频下载香蕉影视

四通道動態LED陣列近紅外光譜儀 DUAL-KLAS-NIR
日期:2019-05-15 00:00:00

四(si)通(tong)道(dao)動態(tai)LED陣(zhen)列(lie)近(jin)紅(hong)外(wai)光譜儀(yi)

DUAL-KLAS-NIR

同(tong)步測(ce)量PSII活(huo)性(xing)(葉綠素(su)熒(ying)光(guang))和(he)PSI活性(P700

PC(質(zhi)體(ti)藍素)Fd(鐵(tie)氧還蛋白)的氧(yang)化(hua)還原(yuan)變化

image.png


2016年(nian)2月Photosynthesis Research雜誌(zhi)發表了Schreiber博(bo)士(shi)團隊(dui)的研究(jiu)文章Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer,隆(long)重(zhong)介(jie)紹了(le)DUAL-KLAS-NIR四通道動(dong)態LED陣列近紅外光譜(pu)儀。之(zhi)後(hou)2016年(nian)4月2017年3月Schreiber博士團(tuan)隊再(zai)次(ci)發表文(wen)章(zhang),進(jin)一步闡(chan)述(shu)DUAL-KLAS-NIR的(de)實際(ji)應用(yong)。

作為PSI的電子(zi)供體和電子受體,PC(質體藍(lan)素)和Fd(鐵氧還(hai)蛋(dan)白(bai))對PSI的氧化還原起著(zhu)至(zhi)關(guan)重要(yao)的調控作用。但(dan)一直(zhi)缺(que)乏科(ke)學便捷(jie)的手(shou)段(duan)對其(qi)運(yun)轉狀態進行檢測。集成以(yi)DUALl-PAM-100為標誌的第(di)二代(dai)PAM的基(ji)本(ben)功能(neng),采用先(xian)進的去卷(juan)積技(ji)術(shu)(一種(zhong)根(gen)據來源(yuan)不同對信(xin)號進行分(fen)離的技術),WALZ公(gong)司(si)推出(chu)了可以測量(liang)PC和Fd氧化還原狀(zhuang)態的新一(yi)代PAM熒光儀—DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀。

DUAL-KLAS-NIR不但集(ji)成(cheng)了Dual-PAM-100的基本功能,可以同時(shi)測量PSP和PSI,而且(qie)能夠(gou)測量4組不同波(bo)段(780-820nm,820-870nm,840-965nm,870-965nm)的信號(hao),實(shi)現對(dui)P700(PSI反(fan)應中(zhong)心(xin))、PC和Fd的氧化還原狀態分別測量。另(ling)外,它還可以測量由(you)540nm和460nm光化光激發(fa)的葉綠(lv)素熒光。利(li)用DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀,可(ke)以準(zhun)同步地測量各種不同的信號(hao),不(bu)僅(jin)在(zai)馳豫動力下,還可持(chi)續(xu)地(di)在自(zi)然(ran)穩(wen)態下同時獲取(qu)各(ge)組(zu)分的信息(xi)

 

突出特(te)點(dian)

  可測量活體葉片(pian)或懸(xuan)浮(fu)液,對P700、PC和Fd分別進行連(lian)續的實時的去(qu)卷積分析(xi)。

  同時測量分別(bie)由540nm(整(zheng)個葉片)和460nm(表(biao)層(ceng)細(xi)胞(bao)層)波段激發的兩(liang)種葉(ye)綠素熒光。

  通過集成發光二(er)極(ji)管(guan)技術,獨創(chuang)高度(du)緊湊的固態照(zhao)明係(xi)統,提(ti)供(gong)635nm,460nm的光化光和740nm波段遠紅光,以及(ji)635nm單周轉和多周轉(zhuan)飽和閃(shan)光。

  擁(yong)有和DUAL-PAM-100相(xiang)似的光學部(bu)件幾何結構(gou),可與3010-DUAL兼(jian)容(rong),結(jie)合GFS-3000光合(he)儀,在可控(kong)條件(光照,溫度,濕(shi)度,CO2濃(nong)度)下,同步測量氣(qi)體交(jiao)換(huan)和電(dian)子傳(chuan)遞相關的氧化還原。

  測量光頻(pin)率範(fan)圍廣(guang)(1 - 400 kHz),允(yun)許(xu)連續評(ping)估(gu)Fo,可以在高(gao)時間(jian)分辨(bian)率(lv)下記(ji)錄(lu)快(kuai)速(su)動態瞬(shun)變(bian)(如(ru)多相熒光上(shang)升(sheng)動力學或脈衝弛豫動力學)。


主(zhu)要功能

  測定(ding)質體藍素(PC),PS I反應(ying)中心(P700)和鐵氧還蛋白(Fd)的氧化還原變化。

  通過(guo)應用創新的分析方法(fa)獲(huo)得(de)PC,P700和Fd光譜特征(zheng)。在線監(jian)測P700,PC和Fd的氧化還原變化,並確定PC / P700和Fd / P700的比(bi)值。

  可以通過綠色或藍色(se)PAM測量光來激發熒光。綠光比藍光更(geng)深(shen)入到葉子中。因(yin)此(ci),綠色激發的熒光包括來自更深葉層的信息,因(yin)此(ci)非常適(shi)合與整個葉子的NIR吸(xi)收(shou)測量進行(xing)對比分析。

  專業(ye)數(shu)據(ju)記錄軟(ruan)件,入(ru)門(men)特別簡(jian)單。可使(shi)用DUAL-KLAS-NIR軟件(jian)的自動測量程序實驗(yan),也(ye)可以編(bian)輯(ji)腳本(Script)或(huo)者(zhe)保(bao)存(cun)手動測量程(cheng)序(xu)(Trigger),輕(qing)鬆(song)執(zhi)行複(fu)雜的測量協(xie)議(yi)。可自定義(yi)測量動作用於特殊誘(you)導(dao)過程動力(li)學曲(qu)線數據獲取和分析。

  兼具慢速動力學(xue)曲線(xian)(飽(bao)和脈(mai)衝分析、誘導曲線和光響應曲線)和快速動力學曲線(飽和脈衝(chong)動力學曲線、高達30µs分辨率的馳(chi)豫(yu)動力學曲線)。

image.png

DUAL-KLAS-NIR軟件近紅外測量光設(she)置(zhi)


image.png

同步(bu)測量Fluo, P700, PC, Fd慢速誘導動力學曲線



        

應用領(ling)域

光合作用電子傳遞(di)過程各複合體的氧化還原狀態深入剖析,類(lei)囊體膜(mo)蛋白組分功(gong)能研(yan)究。

可廣泛應用於光合合成生物(wu)學研究相關的植(zhi)物學,植物生(sheng)理(li)學,分子生物學,農(nong)學,林學的領域(yu)。



應用案(an)例

DUAL-KLAS-NIR為光合作(zuo)用開辟(pi)了一個全新的研究領域,實時顯示P700,PC和Fd在活體材(cai)料(liao)中的氧化還原狀態,在線解(jie)卷積氧化還原信號。完(wan)美實現(xian)PS I及其供體側(ce)和受體側氧化還原動力學的同步測量,從而(er)了解它們(men)圍繞(rao)光係統I的複雜相互(hu)作用,另外還可以探究PS I周圍(wei)的循(xun)環電子傳遞的信息。

image.png

在DUAL-KLAS-NIR出現之前(qian),測量光係統(tong)I的有(you)效量子產(chan)量,P700信號總(zong)是會(hui)摻(can)雜(za)Fd的貢(gong)獻(xian)和PC的變量。上圖(tu)中圖C顯示了不同光強梯度下甘(gan)藍型(xing)油菜葉片PSI的有效(xiao)PSI量子產(chan)量Y(I),PSII的有(you)效量子產(chan)量Y(II)和經(jing)PSI熒光修正後的PSII的有效(xiao)量子產率Y(II)corr。經過修(xiu)正(zheng)後,Y(II)corr和Y(I)在低(di)光強下相似(shi)(小(xiao)於(yu)500μmol m-2 -1)。然而,當(dang)光強(qiang)大於500μmol m-2-1時,Y(I)明(ming)顯高於Y(II),Y(I)/Y(II)最高可達(da)1.45.

光係統I的有效天線尺寸(cun)測量。植物樣品(pin)從(cong)在黑暗(an)條(tiao)件轉移(yi)到(dao)光下時,在PSI附近,首先PC被(bei)氧化,開(kai)始(shi)積(ji)累,之後才(cai)是(shi)P700被(bei)氧化。單純(chun)的PC信號變化的初始斜(xie)率可以用作PS I的有效天(tian)線尺(chi)寸的度量。


右圖是放(fang)大後的PC(紅色)和P700(藍色)初始吸光度變化,顯示了他(ta)們初始斜率的巨大差(cha)異(yi)。對於黑暗適應的葉子,轉到光下的短(duan)時間內(nei),光係統I受體側未(wei)活化,Fd還原的初(chu)始斜率也也說(shuo)明了這一點。
image.png


 

DUAL-KLAS-NIR軟件設有一個窗口顯(xian)示(shi)P700和PC氧化還原狀態的相對變化。該功能可以用來計(ji)算(suan)PC和P700之間的表觀平衡常數。這(zhe)對研究P700與其供體側的相互關係是非(fei)常重要的。


image.png


 

image.png

 對暗適應的葉子施(shi)加飽和脈衝,測量Fd氧化還原動力學。黄页网站大全香蕉视频下载不難(nan)發現,飽和脈衝產生的電子將Fd還原,飽和脈衝之後的黑(hei)暗中,Fd被緩(huan)慢再氧化。之後,PSI的受體側的電子流(liu)被激(ji)活,再氧化動力學變得更快。在激活PSI的受體側之後,可以通過監測脈衝後Fd再氧化的速率來研究Fd的暗滅(mie)活。這些(xie)動力學變化可以通過指數擬(ni)合程序擬合。圖A給(gei)出了Fd再氧化動力學曲線指(zhi)數擬合程序擬合的實例,圖B顯示了常春藤葉片不同暗適應時間後的PSI受體側的暗滅(mie)活動力學差異。


image.png

PC,P700和Fd的最大NIR透(tou)射(she)率變化與(yu)這些複合物的在樣(yang)品中的含(han)量成比例(li),並(bing)且PC,P700和Fd的消光係數的比率是恒定的。這可以用於探(tan)究不同物種或不同生長(zhang)條件下(例如陽(yang)生/陰(yin)生,脅迫(po)/非脅(xie)迫)樣品的PC / P700和Fd / P700比率,以及PC和Fd庫(ku)的相對大小。現已(yi)觀(guan)察(cha)到高PC / P700比率與高電子傳遞速率(ETR)值(zhi)相關。上圖顯示,在常春(chun)藤陽生和陰(yin)生葉片中,相對於P700,它(ta)們PC和Fd含量有著顯著的不同。


主要測量參數:

  葉綠素熒光測量:Fo, Fm, Fm’, F, Fo’, Fv/Fm, Y(II), qP, qL, qN, NPQ, Y(NO), Y(NPQ) , ETR(II)等(deng)參(can)數,以及各種熒光動力學曲線。

  P700測量:必須能夠測量Pm, Pm’, Y(I), ETR(I), Y(ND)和Y(NA)等參數,以及各種P700動力學曲線。

  PC測量:PCm, PCm’, PCox, Rel PCox

  Fd測量:Fdm, Fdm’, Fdred, Rel Fdred, Fd/PC

  實時顯示數據采(cai)集,可以連續顯示數據采集過程即(ji)完整的動力學曲線過程

  軟件程序:慢(man)速動力學曲線,快速動動力學曲線,曲線擬合


產地:德(de)國(guo)WALZ


代表文獻

數據來(lai)源:光合作用文獻Endnote數據庫

原始數據來源:Google Scholar

2022

Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments." New Phytol n/a(n/a).

http://wap.superloop.com.cn/x-third-part/10.1111/nph.18506

Lazár, D., et al. (2022). "Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light." Journal of Experimental Botany 73(18): 6380–6393.

http://wap.superloop.com.cn/x-third-part/10.1093/jxb/erac283

Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson cycle and carbohydrate metabolism in cyanobacteria."  13.

http://wap.superloop.com.cn/x-third-part/10.3389/fpls.2022.1028794

Khruschev, S. S., et al. (2022). "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications." Biophysical Reviews.

http://wap.superloop.com.cn/x-third-part/10.1007/s12551-022-00982-2

Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.

http://wap.superloop.com.cn/x-third-part/10.1093/plphys/kiac362

Appel, J., et al. (2022). "Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.

http://wap.superloop.com.cn/x-third-part/10.3390/microorganisms10081617

Lempiäinen, T., et al. (2022). "Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery." Plant Cell Environ.

http://wap.superloop.com.cn/x-third-part/10.1111/pce.14400

Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-022-00934-7

Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions." Front Microbiol 13: 896190.

http://wap.superloop.com.cn/x-third-part/10.3389/fmicb.2022.896190

Rodriguez-Heredia, M., et al. (2022). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.

http://wap.superloop.com.cn/x-third-part/10.1093/plphys/kiab550

Wang, Y., et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria." eLife 11.

http://wap.superloop.com.cn/x-third-part/10.7554/eLife.71339

Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on the frequency characteristics of non-photochemical quenching and cyclic electron transport." bioRxiv: 2022.2002.2009.479783.

http://wap.superloop.com.cn/x-third-part/10.1101/2022.02.09.479783

Schmidtpott, S. M., et al. (2022). "Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana." International Journal of Environmental Research and Public Health 19(9): 5144.

http://wap.superloop.com.cn/x-third-part/10.3390/ijerph19095144

 

2021

Furutani, R., et al. (2021). "The difficulty of estimating the electron transport rate at photosystem I." Journal of Plant Research.

http://wap.superloop.com.cn/x-third-part/10.1007/s10265-021-01357-6

Rodriguez-Heredia, M., et al. (2021). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.

http://wap.superloop.com.cn/x-third-part/10.1093/plphys/kiab550

Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."

http://wap.superloop.com.cn/x-third-part/handle/10024/152715

Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species." Plants 10(7): 1401.

http://wap.superloop.com.cn/x-third-part/2223-7747/10/7/1401

Castell, C., et al. (2021). "New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.

http://wap.superloop.com.cn/x-third-part/10.1093/pcp/pcab044

Nature Plants.

http://wap.superloop.com.cn/x-third-part/10.1038/s41477-020-00828-3

Mattila, H., et al. (2021). "Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves." Trees.

http://wap.superloop.com.cn/x-third-part/10.1007/s00468-021-02114-x

Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives CO2 Assimilation in Maize Leaves." International journal of molecular sciences 22.

http://wap.superloop.com.cn/x-third-part/10.3390/ijms22094894 

Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7): 996.

http://wap.superloop.com.cn/x-third-part/2076-3921/10/7/996

Nature communications

http://wap.superloop.com.cn/x-third-part/10.1038/s41467-021-24107-7

 

2020

Synechocystis

http://wap.superloop.com.cn/x-third-part/10.1101/2019.12.23.886929

Shimakawa, G., et al. (2020). "Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer." Photosynthesis Research 144(1): 63-72.

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-020-00733-y

Plant Journal

http://wap.superloop.com.cn/x-third-part/doi/abs/10.1111/tpj.15053

Furutani, R., et al. (2020). "Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I." Plants 9(12): 1761.

http://wap.superloop.com.cn/x-third-part/10.3390/plants9121761

Kato, H., et al. (2020). "Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae." Plant Physiology: pp.00726.02020.

http://wap.superloop.com.cn/x-third-part/10.1104/pp.20.00726

Nikkanen, L., et al. (2020). "Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant Journal n/a(n/a).

http://wap.superloop.com.cn/x-third-part/10.1111/tpj.14812

Sétif, P., et al. (2020). "Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861(10): 148256.

http://wap.superloop.com.cn/x-third-part/10.1016/j.bbabio.2020.148256

Theune, M. L., et al. (2020). "In-vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148353.

http://wap.superloop.com.cn/x-third-part/10.1016/j.bbabio.2020.148353

 

2019

Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced toxicity and hypoxia. Plant Cell and Environment 42: 574-590.

http://wap.superloop.com.cn/x-third-part/10.1111/pce.13441

Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C: Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants 8: 152.

http://wap.superloop.com.cn/x-third-part/10.3390/plants8060152

Arabidopsis thaliana

http://wap.superloop.com.cn/x-third-part/10.1111/tpj.14177

http://wap.superloop.com.cn/x-third-part/10.1111/ppl.12914

in vitro

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-019-00665-2

Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research, in press.

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-019-00691-0

 

2018

Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M, Rintamäki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct 2: e00093.

http://wap.superloop.com.cn/x-third-part/10.1002/pld3.93

Shimakawa G, Miyake C: Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2: e00073.

http://wap.superloop.com.cn/x-third-part/10.1002/pld3.73

Takagi D, Miyake C:  PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum 164: 337–348.

http://wap.superloop.com.cn/x-third-part/10.1111/ppl.12723

Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7: e38194.

http://wap.superloop.com.cn/x-third-part/10.7554/eLife.38194

 

2017

Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-017-0394-7

 

2016

Klughammer C, Schreiber U: Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer.

Photosynthesis Research 128: 195–214.

http://wap.superloop.com.cn/x-third-part/10.1007/s11120-016-0219-0

Schreiber U, Klughammer C: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant and Cell Physiology 57: 1454–1467

http://wap.superloop.com.cn/x-third-part/10.1093/pcp/pcw044


收 藏
  亚洲一区二区三区中文字幕-亚洲一区二区三区在线精品-亚洲一区二区三区日韩精品  亚洲一区二区三区欧美成人-亚洲一区二区三区av中文字幕-亚洲一区二区欧美日韩精品  亚洲一区二区精品午夜-亚洲一区二区精品-亚洲亚洲欧美日韩国产